OUTLINE

The UCUF-04MT ultrasonic flowmeter for high-temperature applications is an enhanced version of the UCUF series which are best suited for measuring low flows such as ultra-pure water and chemical liquids. All the wetted parts are made of special-grade PFA material and have no moving parts or mechanical seals such as O-rings. This clean structure without dead pockets makes the flowmeter the perfect choice for the semiconductor industry, which requires extreme cleanliness.

The SFC-010T is a thin converter, which can be installed on the DIN rail.

Using state-of-the-art technologies such as digital signal processing (DSP), this converter ensures stable flow measurement by minimizing the adverse effects of bubbles in the fluid, which are significant problems in semiconductor manufacturing and chemical liquids handling processes. Furthermore, measurement at low flow rate has been stabilized by increasing the time resolution and accelerating signal processing compared with existing products.

FEATURES

- Saves energy and space
 The SFC-010T is more compact than conventional models.

- High-speed calculation
 The SFC-010T achieves 10-ms high-speed sampling.

- Significantly improved resistance to bubbles
 Bubbles contained in liquids interfere with the propagation of ultrasonic waves and can prevent flow measurement. Based on proven field experience and state-of-the-art DSP signal processing technology, TOKYO KEISIO CO., LTD. has succeeded in achieving stable measurement by detecting the effect of bubbles from waveforms and then eliminating the abnormal output from the measurement values.

- Standards
 - Passed the EMC test conforming to EN 61326-1: 2006
 - RoHS compliant

- Detector
 - Applicable to high-temperature liquids (up to 180°C)
 - Measurable high kinetic viscosity liquids (up to 40 mm²/s)
 - Ideal clean construction
 - High resistance to corrosion and easy installation

- Converter
 - Zero-point check
 Zero-point adjustment in advance ensures optimal measurement.

 - Parameter setting
 The dedicated configurator software facilitates parameter setting (requires RS-485 communication converter).

 - Display
 Flow rate and status are displayed in 7-segment red LED (4 digits).

MAIN USES

- Measuring the flow rate of high-temperature chemical liquids in the semiconductor manufacturing process
 (Contact us about applicable fluids.)

- Measuring the flow rate of chemical liquids in the supply process
 (Contact us about applicable fluids.)

- Measuring micro flow rates
SPECIFICATIONS OF CONVERTER (SFC-010T)

- Detector to be connected: 1 unit
- Power supply: 24 V DC ±10%
- Consumption current: Approx. 155 mA
- Minimum driving current: Approx. 350 mA
- Inrush current: Approx. 2 A/2 ms
- Display: 4-digit LED (flow rate and status)
- Communication function: RS-485 half-duplex asynchronous serial communication
 - Modbus Protocol, RTU mode
 - Baud rate: 19.2 kbps
 - Data size: 8 bits
 - Parity: Even
 - Stop bits: 1 bit
 - Address switch: 01 to 32
- Output: Analog output: 4 to 20 mA DC,
 - 0 to 20 mA DC,
 - 1 to 5 V DC,
 - 0 to 5 V DC,
 - 0 to 10 V DC,
 - Load resistance is less than 500Ω.
 - Frequency output: 0 to 1 kHz
 - Rating: Open collector pulse
 - 30 V DC/10 mA
 - Alarm output: High/Low 2 points
 - Rating: Open collector pulse
 - 30 V DC/10 mA
- Output cycle: 10 ms
- Time constant: 0.0 to 25.0 sec.
- Low cutoff: 0.0 to 25.0 % F.S.
- Connector: SMB connector
- Detector: UCF-04MT
- Parameter setting: Setting through the dedicated configurator software
- Ambient temperature: 0 to 45°C for 1 unit
 - 0 to 25°C for more than 2 units closely installed
 - At least 10-mm intervals are required between multiple units.
 - Ventilation is required for installing in a sealed environment.
- Humidity: 30 to 80 % RH
- RoHS: DIN rail installation
- Installation: IP20 equivalent (indoor)
- Enclosure classification: Heat-resistant ABS (white)
- Case material: Mass:
 - Approx. 150 g

DIMENSIONS OF CONVERTER

![Diagram of the converter dimensions and terminal connection](image)

<table>
<thead>
<tr>
<th>Terminal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 1</td>
<td>+ Power supply input 24 V DC</td>
</tr>
<tr>
<td>No. 2</td>
<td>– Grounding</td>
</tr>
<tr>
<td>No. 3</td>
<td>+ Analog output</td>
</tr>
<tr>
<td>No. 4</td>
<td>–</td>
</tr>
<tr>
<td>No. 5</td>
<td>+ Alarm output 1</td>
</tr>
<tr>
<td>No. 6</td>
<td>– Alarm output 2</td>
</tr>
<tr>
<td>No. 7</td>
<td>+ Common</td>
</tr>
<tr>
<td>No. 8</td>
<td>– Pulse output</td>
</tr>
<tr>
<td>No. 9</td>
<td>+ RS-485</td>
</tr>
</tbody>
</table>
STANDARD SPECIFICATIONS OF DETECTOR

- **Measurable fluid**: Liquids
 (No bubbles. PFA-permeable or corrosive liquids are not allowed.)
- **Flow rate range**: 0 to 2000 mL/min
- **Fluid temperature**: 10 to 180°C
- **Fluid pressure**: 0 to 0.5 MPa (See Table 1.)
- **Fluid sound speed**: 1000 to 2200 m/s
- **Fluid kinematic viscosity**: 0.3 to 40.0 mm²/s
- **Flow range**: See Table 2.
- **Accuracy**: See Table 2. (No boiling, bubbling, or chemical reaction)
- **Process connection**: PFA tube end (See Table 3.)
- **Enclosure classification**: IP65 (indoor)
- **Ambient temperature**: 5 to 60°C
- **Pressure loss**: Pressure loss for water (kPa)
 \[\text{Pressure loss} = C \times Q^2 \]
 where, C: Pressure loss coefficient (See Table 3.)
 Q: Flow rate (L/min)
- **Materials**: See Table 4.
- **Dedicated cable**: Two coaxial cables
 Length: 0.5 m (TEF-covered: White)
- **Connector**: SMB connector
- **Detector**: SFC-010T
- **Mass**: Approx. 250 g

Table 1: Relation between pressure and fluid temperature

![Graph showing relation between pressure and fluid temperature]

Table 2: Detector characteristic 1

<table>
<thead>
<tr>
<th>Model</th>
<th>Flow velocity < 1 m/s</th>
<th>Flow velocity ≥ 1 m/s</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Flow rate (L/min)</td>
<td>Accuracy (L/min)</td>
</tr>
<tr>
<td>UCF-04MT</td>
<td>0.1 to 0.8</td>
<td>±0.008*</td>
</tr>
</tbody>
</table>
* Note: For DIW of 23°C

Table 3: Detector characteristic 2

<table>
<thead>
<tr>
<th>Model</th>
<th>Pressure loss coefficient: C</th>
<th>Connection tube size</th>
<th>Mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCF-04MT</td>
<td>4.5</td>
<td>1/4"</td>
<td>Approx. 250 g</td>
</tr>
</tbody>
</table>

Table 4: Materials of detector

<table>
<thead>
<tr>
<th>Part</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wetted part</td>
<td>PFA</td>
</tr>
<tr>
<td>Tube</td>
<td>PFA</td>
</tr>
<tr>
<td>Cable fitting</td>
<td>PP</td>
</tr>
<tr>
<td>Cable sheath</td>
<td>ETFE(White)</td>
</tr>
<tr>
<td>Sensor cap</td>
<td>PPS/GF30(Black)</td>
</tr>
</tbody>
</table>

MODEL CODE OF DETECTOR

<table>
<thead>
<tr>
<th>Model code</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCF-04MT</td>
<td></td>
</tr>
<tr>
<td>MT</td>
<td>4 mm</td>
</tr>
<tr>
<td>Meter size</td>
<td>U shaped (Standard)</td>
</tr>
<tr>
<td>Z</td>
<td>Z shaped</td>
</tr>
<tr>
<td>Cable length</td>
<td>0.5m (Standard) *1</td>
</tr>
<tr>
<td>Special</td>
<td>(Blank) None</td>
</tr>
</tbody>
</table>

*1 It corresponds with an extension cable 0.5m or more. Required cable length is filled in (Standard 1, 3, 5m).
*2 They are 1, 5 and entry in the case of a standard cable (0.5m) + extension cable (1.0m).

MODEL CODE OF CONVERTER

<table>
<thead>
<tr>
<th>SFC-010T</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog output type</td>
<td>4 to 20 mA</td>
</tr>
<tr>
<td>1</td>
<td>0 to 20 mA</td>
</tr>
<tr>
<td>2</td>
<td>1 to 5 V</td>
</tr>
<tr>
<td>3</td>
<td>0 to 5 V</td>
</tr>
<tr>
<td>4</td>
<td>0 to 10 V</td>
</tr>
<tr>
<td>Special specification</td>
<td>None</td>
</tr>
</tbody>
</table>

*1 If any special specification are required, add [-/Z] at the end of the code and describe them separately. Please contact us for their availability.
DIMENSIONS OF DETECTOR (Left: U-shaped, Right: Z-shaped)

![Diagram of U-shaped and Z-shaped detectors](image)

PRECAUTIONS ON INSTALLATION

- Install the detector in piping where no air or gas bubbles exist.
- The detector must be full with liquid. Although the detector can be installed in horizontal, vertical or tilted piping, it is recommended to place the bottom of the U-shaped tube vertically so that liquid inside drains easily.
- Install the control valve downstream of the detector.
- Install the detector and converter away from power relays and solenoid valves that may generate noise.
- Keep the signal cables away from power cables with high voltage and current.

* Specification is subject to change without notice.*