

Maintaining flow rate constant under fluctuating pressure

Constant Flow Valves

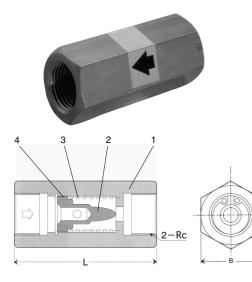
FPC Series RSP Series NSPW Series NFFW Series NFF-S Series

General description

The constant flow valves are used to maintain preset flow rate in a line that develops primary (inlet side) or secondary (outlet side) pressure fluctuations.

Requiring no control device against pressure fluctuation, these valves contribute to savings in space and cost. Especially, they offer best suited and handy use with cooling and hot water lines of air conditioning systems in buildings and water supply lines in plants and multiple housing.

Also, as the valves need no power supply to operate, they are safe against highly flammable and hazardous fluids. They are accurately set for necessary flow rate to the customer's specification in the factory before shipment so that no field setting is required.


Features

- Designed to make stable liquid feed possible at constant flow rate.
- Inexpensive. Compact. Light in weight
- Installable in horizontal or vertical direction as desired.
- Applicable in wide range of use with small (10mm) to large (80mm) bore diameters.
- Maximum working temperature: 180°C (needle type)
- Available in five types suitable for various needs.

TOKYO KEISO CO., LTD.

[FPC Series]

Model coding system of product

FPC	$-N \square \square P$	-0.7
Series	Size	Flow

Small flow rate needle type constant flow valve

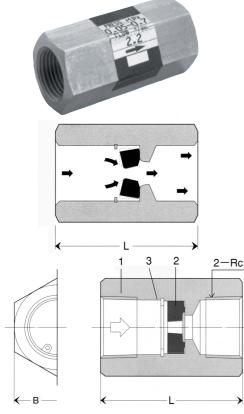
Capable of highly accurate design flow rate control

Main parts list

No.	Name of Parts	Materials
1	Valve Body	SUS304
2	Needle	SUS304
3	Spring	SUS304
4	C-Ring	SUS304

Common specification

Item	Description								
Fluids	Water								
Fluids Temp.	Max 100°C								
Flow rate accuracy	±10%								
Pressure Use	Max 1.0MPa								


Specification

Ma	dal	Con	nection	Control Pressure			Flow					Mass	
IVIC	del	Size (in.)	Туре	Difference (MPa)	L	С	(L/min)			(kg)			
FPC-	N8P	1/4			50	19	0.7	1.0	1.5	2.0			
FPC-	N10P	3/8	Rc Screw	0.05 to 0.7	55	23	1.5	2.0	2.5	3.0	4.0	5.0	0.2
FPC-	N15P	1/2]		65	26	4.0	5.0	7.0				0.3

Precaution Statement

- 1. Set same size of straight run of pipe with constant flow valve in back and forth of it. Primary side→over Size×5 [mm] Secondary side→over Size×10 [mm]
- 2. Vibrations and noise may occur by usage situation, piping configuration and pump characteristics.

[RSP Series]

Model coding system of product

 $\frac{\mathsf{R}\mathsf{S}\mathsf{P}}{\mathsf{S}\mathsf{I}\mathsf{I}\mathsf{P}} = \frac{\mathsf{D}\mathsf{D}}{\mathsf{S}\mathsf{I}\mathsf{I}\mathsf{I}\mathsf{P}}$

2

Series RSP : Body material C3604 RSSP : Body material SUS304

Washer type constant flow valve

The valve is so constructed as to utilize rubber elasticity for constant flow rate. Light in weight, compact and best suited for equipment setup.

• Main parts list

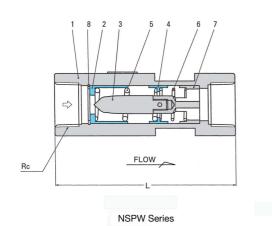
No.	Name of Parts	Materials				
1	Valve Body	C3604				
2	Flow Washer*	NBR·NR				
3	Stop Ring	SUS304				
≫Mate	erials are different by	flow				

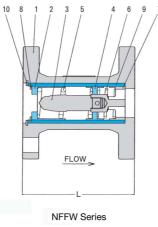
Common specification

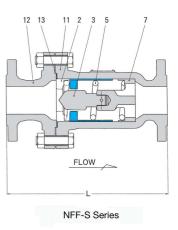
Item	Description					
Fluids	Water					
Fluids Temp.	Max. 35°C					
Flow rate accuracy	±20%					
Pressure Use	Max 0.7MPa					
Option	Body Material: SUS304					

Specification

Model	Coni	nection	Control Pressure	Dimensions (m/m)		Flow	Mass
WIDGEI	Size (in.)	Туре	Difference (MPa)	L	В	(L/min)	(kg)
RSP-12	3/8	Rc	0.05 to 0.7	50	23	0.6 0.8 1.2 1.5 1.8 2.2 2.5 2.6 3.0 3.5	0.15
RSP-15	1/2		0.05 to 0.7	55	26	4.0 5.0 5.5 8.5 9.0	0.2


Precaution Statement


- 1. Set same size of straight run of pipe with constant flow valve in back and forth of it. Primary side→over Size×5 [mm] Secondary side→over Size×10 [mm]
- 2. Vibrations and noise may occur by usage situation, piping configuration and pump characteristics.


[NSPW. NFFW. NFF-S Series]

Needle type constant flow valve

The valve is so constructed that it receives fluctuating fluid pressure with piston and changes fluid passage area by balancing received pressure with spring force, thereby maintaining constant flow rate.

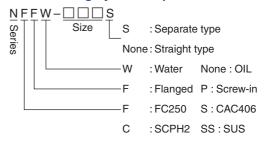
Main parts list

No.	Name of Parts	Materials						
INO.	Name of Parts	NSPW	NFFW	NFF	NFF-S			
1	Valve Body	CAC406	FC	250	—			
2	Piston		SUS403		SCS2			
3	Needle	SUS403						
4	Spring Holder	C3604	C3604 or	—				
5	Spring A	SUS304	JP9*					
6	Spring B		_					
7	Needle Holder	SUS403	S25C or I	FCD400*	FCD400			
8	Stop Ring		SUS304		—			
9	Sleeve	—	CAC406		—			
10	Stop Ring	—	SUS304		—			
11	Lower Body	_			FC250			
12	Upper Body	— FC250						
13	Body Packing	— NON-ASBESTC						
-	stariale are different by value air							

*Materials are different by valve size.

Specification

Model	Conn	ection	Control Pressure Difference	Mass	
	Size	Туре	[MPa]	[mm] L	[kg]
NSPW-10	3/8			85	0.4
NSPW-15	1/2	Rc Screw	0.03~1*	95	0.4
NSPW-20	3/4		0.03~1*	110	0.7
NSPW-25	1			135	1.3
NFFW-32	1 1/4			120	4.6
NFFW-40	1 1/2	Flongo		140	5.4
NFFW-50	2	Flange JIS10KFF	0.03~1*	160	7
NFFW-65	2 1/2	JISIUKFF		190	11.3
NFFW-80	3			220	16.1
NFF-50S	2	Flange	0.05~0.7*	300	15
NFF-80S	3	JIS10KFF	0.05 20.7	350	30


* Control pressure difference depends on setting flow rate.

Please refer to flow chart.

• Common specification

ltem	Description				
Fluid	Water Other Liquid	Oil			
Fluid Temperature	MAX80°C	MAX180°C			
Flow rate Accuracy	5 to 20L/min: ±15% 22 to 850L/min: ±10%				
Pressure Use	MAX 1.0MPa				
Option	Body Materials: SUS304, SCPH2 Except Flange Rating other JIS10KFF				

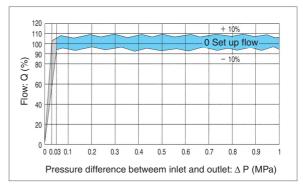
Model coding system of product

Precaution Statement

1. Set same size of straight run of pipe with constant flow valve in back and forth of it.

Primary side \rightarrow over Size \times 5 [mm] Secondary side \rightarrow over Size \times 10 [mm]

2. Vibrations and noise may occur by usage situation, piping con figuration and pump characteristics.


Flow Rate List (Capacity for water)

				Stand	dard Fl	ow					
Connection		Rc S	crew					Flange	•		
Size Flow L/min	10	15	20	25	32	40	50	50S	65	80	80S
5	0	0									
6	0	0									
7	0	0									
8	0	0									
9	0	0									
10	\triangle	0	0								
11	\triangle	0	0								
12	\triangle	0	0								
14			0								
16			0	0							
18			0	0							
20			$\left \begin{array}{c} 0 \\ 0 \end{array} \right $								
22			0	0							
25											
28 30						0					
30											
36					00	0000	<u> </u>				
40				0							
40 45					00	0					
45 50					0	0					
55		-	-		ŏ	0					
60					ŏ	ŏ					
65					ŏ	ŏ					
70					ŏ	ŏ					
80					Δ	ŏ					
90					\triangle	Ő	0		0		
100							ŏ		ŏ		
110						\triangle	ŏ		ŏ		
120						\triangle	ŏ		ŏ		
140						\triangle	ŏ		ŏ		
150							Ō		-		
160							Ō		0		
170											
180										0	
190											
200									0	0	
210											
220							\triangle		0	0	
230											
240											
250							min. 0.06			0	
260											
270		L		L			ļ				
280							I			0	
300							I			0	
330										0	
340							I				
360		I								0	
400									min. 0.1		
425							1	min 0.4			
450 500								min. 0.1			
550											
600										min. 0.07	
650										min. 0.08 min. 0.09	
700							1			min. 0.09 min. 0.10	
750							1			min. 0.10 min. 0.12	
800											
850							1			min. 0.15	
Face to Face							1				0.00
Dimensions m/m	85	95	110	135	120	140	160	300	190	220	350

How to understand the "chart" Min. controlled differential pressure: ○ mark △▲ mark: 0.05MPa

Max. controlled differential pressure. non colored column: 1 MPa colored column: 0.7MPa Except water, please refer to specific gravity conversion table.

Control Properties

• Selection of Constant Flow Valve

- For water (density: 1g/cm³), select optimal flow rate vs. connection size from the above list.
- For other special fluids, the selection requires compensation by their density.
- Viscosity compensation

For fluids below 5×10^{-5} m²/s (50 cst) in dynamic viscosity, the flow rate vs.connection size selection has little to do with viscosity. Change in the selection according to viscosity depends greatly on flow rate and pressure (flow velocity). When flow rate is small or fluid pressure (flow velocity) is low, viscosity is the influencing factor for the selection. Consult with us before selection in the case of high viscosity and small flow rate.

(Example) If oil has a flow rate of 500 ℓ /min with density at 0.8g/cm³, obtain a density conversion factor of

1.118 as follows.

Density conversion factor : $k = \frac{1}{\sqrt{\gamma}}$

k : Density conversion factor

 γ : Density (g/cm³)

Thus, $500 \div 1.118 = 447 \ l$ /min. Accordingly, select an approximate flow rate of $450 \ l$ vs. connection size of 50S, 80 or 80S from the above list.

* Uses for flow rate beyond 450 *l* /min are outside of accuracy guarantee range.

* Specification is subject to change without notice.

TOKYO KEISO CO., LTD.

Head Office : Shiba Toho Building, 1-7-24 Shibakoen, Minato-ku, Tokyo 105-8558 Tel : +81-3-3431-1625 (KEY) ; Fax : +81-3-3433-4922

e-mail : overseas.sales@tokyokeiso.co.jp ; URL : http://www.tokyokeiso.co.jp